图2:以湿法模式测量的茄套材料。上图:单一代表性体积加权的粒度分布。下图:三个独立样本叠加图,每个样本测量三次。
图2显示了以水为溶剂,湿法模式下测量的茄套材料的粒径分布。此外,三个样本的三次重复结果(共9个测量值)如图2所示。体积加权的D值和相对标准差(RSD)见表2。
表2:湿法模式下测量的茄套材料的体积加权D值和相对标准差。**次:所有样品**测量运行的平均值。**和第三次:所有样品的**次和第三次测量的平均值。
乐发vll500
对于所有三个独立的测量样本,叠加图(图2,下图)显示了随着测量次数的增加,粒径向较小粒径轻微偏移(见表2)。这表明,由搅拌器引起的机械应力破坏了一些较大的颗粒。在测量前对样品池进行超声处理,可以显著提高这种效果(数据未显示),从而证实了烟-草粉末的易碎性。因此,所有的湿法模式的测量都是在没有超声的情况下进行的。
为了在干法模式下测量茄套材料,使用了砖利的干射流分散(也称为文丘里分散)。与观察到的湿法分散情况类似,烟-草粉末对空气压力引起的破碎非常敏感,因为不断增加的文丘里压力会使分布向小颗粒大小倾斜(数据未显示)。然而,当使用250 mbar的低文丘里压力进行测量时,颗粒破碎是有限的。因此,这里提出的所有干法测量都是使用这种压力进行的。
图3:以干法模式测量的茄套材料:代表性的体积加权粒径分布。
图3显示了干法模式下所测得的粒径分布。三个独立样本的体积加权D值和相对标准差(RSD)见表3。
乐发vll500
表3:干法模式测得的茄套样品体积加权D值和相对标准偏差。三个独立样本的均值
乐发vll500
用干法测量得到的粒度结果比用湿法测量得到的要稍微低一些。对于D90值来说,这一点尤为明显,在干法模式下(128 μm)比在湿法模式下(**次运行169 μm)低25%。